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    Abstract–This paper presents a 92k SPAD, 16×8 pixel 
sensor for PET imaging, implemented in 0.13µm low 
voltage CIS technology. Within each pixel, 720 SPADs are 
organized into high fill factor mini-SiPMs placed around 
a central logic block. The sensor demonstrates a new 
architecture for this application, providing a 
100Msamples/s real time energy histogramming 
capability, as well as an on-chip discriminator for the 
recognition of gamma events and integration control for 
the automatic acquisition of event data. Preliminary 
gamma measurements demonstrate an energy resolution 
of 13.1% at 20ºC, improving to 11.3% at -20ºC. 

I. INTRODUCTION 

he PhotoMultiplier Tube (PMT) is the long 
standing detector of choice in many nuclear 

imaging applications such as Positron Emission 
Tomography (PET). Such systems use a ring of 
detector modules, each containing a scintillator crystal 
and optical sensor, to detect pairs of Gamma photons 
resulting from radiotracer decays inside a patient. 
These detector modules must provide precise timing, 
energy, and positional information for each gamma 
photon detected to allow the point of emission to be 
precisely located.  

In recent years, interest has grown in the realization 
of a low cost, compact, and magnetic field compatible 
replacement for the PMT. Solid-state solutions 
employing Single Photon Avalanche Diodes (SPADs) 
[1, 2] have been explored as a mass-manufacturable 
means of meeting these objectives. These detectors 
provide a discrete digital output pulse for every 
individual photon detected. An array of SPADs may be 
current-summed to produce an ‘analogue’ Silicon 
PhotoMultiplier (SiPM), providing a large 
photosensitive area at the expense of the ability to 
exploit the single photon detecting capability of the 
individual array elements [3]. Alternatively, fully 
digital SiPMs may be constructed by including 
processing logic on-chip. However, such sensors 
typically comprise a small number of large SPADs 
with only per-sensor or per-column photon time-
stamping capability [2, 4].  
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In this paper, we present a 92k SPAD, 16×8 pixel 
sensor implemented in 0.13µm low voltage CIS 
technology [5], with each pixel featuring four 180 
SPAD mini-SiPMs, in-pixel counters, and Time to 
Digital Converters (TDCs) [6]. This new fully-digital 
SoC architecture for PET provides a 100Msamples/s 
real time energy histogramming capability and an on-
chip discriminator for gamma event recognition.  

II. HIGH FILL FACTOR SIPM APPROACHES 

Many SPAD-based sensors are composed of pixels 
containing a single SPAD surrounded by circuitry [7] 
(Fig. 1a). While such pixels can be well suited to 
particular applications, they provide a fill factor far too 
low for photon starved applications such as PET, in 
part due to the mandatory spacing introduced between 
each SPAD and the adjacent logic. As Fig. 2 
demonstrates, the minimum achievable SPAD pitch is 
governed by one SPAD active region diameter, d, plus 
two cathode contact/guard ring thicknesses g, plus the 
width of the electronics. 

Since PET does not require a fine spatial resolution, 
considerably larger pixels (with x and y dimensions of 
several hundred microns) are sufficient. A large 
number of SPADs can therefore be placed together to 
form a mini-SiPM, with one or more such blocks 
bordering a shared pixel logic area (Fig. 1b). 
Furthermore, the technique of well sharing [8] can be 
employed, whereby the SPADs are placed with 
overlapping cathode contacts. This decreases the SPAD 
pitch within the mini-SiPM regions to just d + g, as 
illustrated in Fig. 3. Using this technique, 720 (4×180) 
SPADs of 16.27µm active diameter are implemented in 
a compact 0.57×0.61mm2 pixel area, along with the 
associated electronics, detailed in section III. 

However, the use of well sharing requires the 
adoption of the positive drive bias configuration, 
whereby the full bias potential is applied directly to the 
deep NWELL SPAD cathode. Care must therefore be 
taken in low-voltage CMOS technologies to ensure that 
the high voltage placed on the NWELL does not cause 
parasitic junctions to break down, such as the vertical 
deep NWELL-substrate and lateral NWELL-PWELL 
junctions. 

A number of approaches to this issue exist [9].  The 
lateral parasitic diode at the periphery of the mini- 
SiPM area is addressed here by the use of an undoped 
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Fig. 1: a) Typical
applications such as 3D imaging or FLIM; b) sensor repartitioned as 
a SiPM for improved fill factor.

Fig. 2: a) Plan and b) cross
surrounded by logic in 130nm CMOS imaging 

Fig. 3: a) Layout of shared SiPM with logic channel; b) cross
showing device structure.

Fig. 4: Comparison of cathode well sharing strategies in a nanometer 
scale CMOS imaging process.
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of integration, preserving the timestamps of the crucial 
first few photons in the scintillation pulse, ready to be 
read out along with the spatial data. Fig. 9 illustrates 
the system timing, detailing the propagation of counter 
data through the system, resulting in a histogram 
mirroring the intensity of the incident scintillation light.  

The discriminator’s trigger output can be seen to 
transition in response to the SUM 2 and SUM 3 bins, 
with this decision being fed back to the pixel array 
resulting in the integration of bins SUM 2 onwards, and 
the preservation of the associated TOA 2 TDC code for 
later readout. 

IV.  CHARACTERISATION 

The sensor, shown in Fig. 10, has been tested with a 
3×3×5mm Teflon wrapped LYSO scintillator crystal 
irradiated by a 370kBq, 511keV Na22 gamma source. 
The system achieved an energy resolution of 13.1% 
FWHM at 20°C, and an improved 11.3% FWHM when 
cooled to -20°C. 

A 70ps pulsed laser was used to measure the 
sensor’s timing resolution, operated at low emitted 
power with a diffuser to reduce pile-up. Fig. 11 shows 
the histogram of TDC codes generated by a single 
pixel, exhibiting 263ps FWHM, compared to a 
reference system. When all valid TDC codes in a frame 
are averaged, the resulting FWHM is improved to 
239ps, demonstrating that the per-pixel TDC 
architecture delivers improved timing performance 
with respect to per-column or per-sensor time-
stamping. Table 1 provides a summary of key system 
performance metrics. 
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Fig. 10: Micrograph of sensor die with insert showing pixel detail. 

 
Fig. 11: System jitter characterized using pulsed laser illumination.  

TABLE 1 
PERFORMANCE SUMMARY 

SPAD 

SPAD active 
diameter 

16.27µm SPAD pitch 19.27µm 

Jitter @ 1.4V 
excess bias 

150ps 
Peak PDE @ 
1.4V excess bias 

28% 

In-Pixel TDC 

TDC range  
(12-bit) 

261.59ns 
TDC resolution 
(1 LSB) 

63.88ps 

TDC INL 
-3.8 to +2.3  
LSB 

TDC DNL 
-0.24 to +0.28 
LSB 

TDC spatial 
uniformity 
(single chip) 

0.75ps 

TDC current 
consumption 
(single running 
TDC) 

0.79mA 

In-Pixel Counters 

Mini-SiPM 
counter depth 

7-bit   

Pixel 

Pixel size 0.57×0.61mm2 
Pixel mini-SiPM 
dimensions 

4×180-SPAD 
(15×12) mini-
SiPMs 

Sensor 

Process 
1P4M 0.13µm 
CMOS imaging 

Array size 8×16 pixels 

Die size 9.85×5.425mm2 Array fill factor 42.93% 

Supply voltage 
3.3V for IO 
1.2V for core 

Current 
consumption 

40mA (dark) 
100mA (light) 

Readout interface 

Clock frequency 100MHz Output data rate 1.6Gbps 

Gamma detection performance for 370kBq 511keV Na22 source 

Energy 
resolution, 20ºC 

13.1% 
Energy 
resolution, -20ºC 

11.3% 

 
 [9] R. Walker et. al., “High Fill Factor Digital Silicon 

Photomultiplier Structures in 130nm CMOS Imaging 
Technology”, IEEE Nuclear Science Symposium and Medical 
Imaging Conference, Anaheim, USA, October 2012. 
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